the boiling points of silicon tetramethyl and silicon tetrachloride.
3. Diethyl ether is a better solvent than dibutyl ether for the preparation of the dichloride. Although the greater yields of the trichloride were obtained with the ethyl ether, the pure tri-
chloride could not be isolated from this solvent.
4. A satisfactory method for the complete analysis of small amounts of easily hydrolyzed volatile compounds containing carbon, hydrogen, silicon and chlorine has been devised.
Schenectady, New York Received November 16, 1940

[Contribution from the Department of Chemistry, University of California, Los Angeles]

The Crystal Structure of Diphenylselenium Dibromide

By James D. McCullough and Gabriele Hamburger

Introduction

The investigation of the crystal structure of diphenylselenium dibromide was undertaken for the purpose of studying the effect of the unshared electron pair on the bond orientations and interatomic distances. This subject has recently received attention in the investigations of the structures of the similar molecules, tellurium tetrachloride ${ }^{1}$ by the electron diffraction method and the $\mathrm{IO}_{2} \mathrm{~F}_{2}-$ ion in potassium fluoroiodate ${ }^{2}$ by means of X-rays. In both cases the evidence favored a trigonal bipyramidal structure with the unshared pair in one of the equatorial positions. This structure is also found in the present study, the bromine atoms forming opposed bonds with selenium, while the phenyl groups form bonds which are in a plane at right angles to the axis of the bromine atoms and making an angle of approximately 110° with each other.

Experimental

Diphenylselenium dibromide was prepared by mixing equimolar quantities of Eastman Kodak Co. diphenylselenium and purified bromine, both dissolved in carbon tetrachloride. The resulting precipitate was dissolved in carbon bisulfide and crystallized by slow evaporation of the solvent. The crystals varied from thin needles along the b axis of the unit to plates on (001). Goniometric measurements showed these crystals to be identical to those described by Groth ${ }^{3}$ and by Gilta. ${ }^{4}$ The crystals are described by both authors as being orthorhombic bipyramidal, the former giving axial ratios $a: b: c=0.9023: 1: 0.3758$ and the

[^0]latter $0.5543: 1: 0.8334$. These are consistent when the proper transformation is made.

Oscillation photographs were prepared about the three crystallographic axes using $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation. The photographs about the b or needle axis were obtained from an approximately cylindrical crystal having 12 prism faces and a cross-sectional diameter of about 0.1 mm . These photographs were excellent for intensity estimations. The photographs about the a and c axes were poorer in the order named. This was due to the difficulty of cleaving the thin plates into small enough fragments so that absorption was not troublesome.

Measurements made on these photographs show the size of the unit cell to be $a_{0}=13.95 \pm 0.03 \AA$., $b_{0}=5.78 \pm 0.03 \AA$. and $c_{0}=15.40 \pm 0.03 \AA$. The axial ratios of this cell, $a: b: c=2.413: 1: 2.664$, are in excellent agreement with those given by Groth, which on interchange of b and c axes become 2.401:1:2.662 and with those of Gilta which become $1: \frac{1}{2}(0.8334): 2(0.5543)$ or $2.400: 1: 2.661$. All indices used in this paper are based on the X-ray unit shown above.

The photographs about all three axes show planes of symmetry as required by the orthorhombic system. The only regular absences found on indexing the photographs were $h 0 l$ with l odd, $0 k l$ with k odd and $h k 0$ with ($h+k$) odd. The space group is accordingly uniquely determined as $D_{2 h}^{14}-P b c n$.

A rough density determination gave the value $2.09 \mathrm{~g} . / \mathrm{cc}$. which corresponds to 3.98 molecules per unit cell. The calculated density for 4 molecules in the unit is $2.100 \mathrm{~g} . / \mathrm{cc}$. The intensities used in this analysis were estimated visually with the aid of a calibrated comparison strip and were divided by the Lorentz and polarization factor to obtain values of $\left|F_{(h k l)}\right|^{2}$.

With 4 molecules in the unit cell we must place $4 \mathrm{Se}, 8 \mathrm{Br}$ and 48 C . The space group $D_{2 h}^{14}$ offers three possibilities for the 4 Se . The 8 Br are probably in one set of general positions (8 points to a set) and the 48 C in six such sets. This would give 21 or 22 parameters to be evaluated. If the phenyl groups are assumed to have their usual structure, this number is reduced to 7 or 8 , depending on the positions taken by selenium.

In order to locate the heavier selenium and bromine atoms, Patterson projections were made upon (010) and (100). The summations were carried out only along the lines shown in Figs. 1 and 2 which include all peaks due to interaction of the heavier atoms. The Patterson function for

Fig. 1.-Patterson projection on (010).

Fig. 2.-Patterson projection on (100).
the projection on (010) consists of the double summation: $\mathrm{P}(X, Z)=\Sigma h \Sigma l\left|F_{(h 0 l)}\right|^{2} \cos 2 \pi(h X$ $+l Z)$. Examination of the plots shows that they are consistent with 4 Se in the positions \pm $0 y_{\frac{1}{4}} ; \frac{1}{2}, \frac{1}{2}+y, \frac{1}{4}$ and 8 Br in the positions \pm $x y z ; \frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z ; \frac{1}{2}+x, \frac{1}{2}-y, \bar{z} ; \bar{x}, y$, $\frac{1}{2}-z$, with parameters shown in Tables I and II.

The averages for the bromine parameters are $x=0.149, y=0.078, z=0.157$, and for selenium $y=0.080$. It is interesting that the y parameters are practically equal, indicating that the bond angle $\mathrm{Br}-\mathrm{Se}-\mathrm{Br}$ is 180°.

As a check on these important parameters and in order to locate the phenyl groups, Fourier projections on (010) and (100) were computed, the sign of $\left|F_{h k l}\right|$ being taken as that resulting from the contribution of selenium and bromine with

Table I

Parameters Summation number	x_{Br}	Patterson	Projection on	(010)
1	0.150	$\varepsilon_{\mathrm{Br}}$		
$\mathbf{2}$		0.154		
3		0.158		
4 a	.148			
4 b	.148			
5	.150			

Table II
Parameters prom Patterson Projection un (100) Summation number 2a $y \mathrm{Se}$ ${ }^{2} \mathrm{Br}$ 0.156

2b

3a
. 159
3b
. 157
1 and 4
5 (at $Z=0.32)$
0.080
0.080
the average parameters obtained from the Patterson projections. The projection on (010) is given by the double summation: $\rho(x, z)=\Sigma h \Sigma l$ $\left|F_{k 0 l}\right| \cos 2 \pi(h x+l z)$. The results of these summations are shown in Figs. 3 and 4.

Fig. 3.-Fourier projection on (010).

Fig. 4.-Fourier projection on (100).

The Fourier summations confirm in every detail the previous findings regarding the location of selenium and bromine. The x and z parameters indicated by the Fourier projections are identical to the average values from the Patterson projections. The y parameters from the Fourier projection on (100) are 0.080 for both selenium and bromine, only slightly different from the previous average value of 0.078 . The locations of the phenyl groups are also rather clearly indicated in the projection on (010) but the projection on (100) is of little help in this regard.

In discussing the positions of the phenyl groups, it is convenient to do so in terms of three angles, φ, θ and ω, where φ is the $\mathrm{C}-\mathrm{Se}-\mathrm{C}$ bond angle, θ is the angle between the plane of the $\mathrm{C}-\mathrm{Se}-\mathrm{C}$ bonds and the $\mathrm{Br}-\mathrm{Se}-\mathrm{Br}$ axis and ω is the angle between the plane of a phenyl group and the plane of the $\mathrm{C}-\mathrm{Se}-\mathrm{C}$ bonds. The positions of the phenyl groups are controlled entirely by the above angles and the $\mathrm{Se}-\mathrm{C}$ bond distance, giving four parameters in all.

From packing considerations alone we may eliminate values of φ in the region near 180° since this would bring the para carbon atoms within $2.4 \AA$. of the bromine atoms of neighboring molecules and the para hydrogen atoms would be still closer. Examination of the Fourier projection on (010) shows that θ is 90° or very close to this value. Furthermore, it seems likely from steric considerations that the angle ω must be well removed from 90°. If this were not the case, the ortho hydrogen atoms would be too close to the bromine atoms of the same molecule. Taking the $\mathrm{Se}-\mathrm{C}$ bond distance as $1.94 \AA$., the $\mathrm{Se}-\mathrm{Br}$ bond distance as $2.52 \AA$. as calculated from the parameters in this analysis, and giving the distances within the phenyl group their customary values, the calculated non-bonded $\mathrm{H}-\mathrm{Br}$ separation is only $2.1 \AA$. The sum of the van der Waals radii ${ }^{5}$ for hydrogen and bromine is $3.15 \AA$. It appears also that ω must be greater than 0° since if the phenyl groups were parallel to the b axis, the length of this edge of the unit could not be less than $7 \AA$. The value observed for b is 5.78 Å.

Although no set of values for φ, θ, ω and the Se-C distance could be found which would satisfy all of the smaller peaks on the Fourier projection on (010) exactly, the fit is fairly good when the

[^1]Se-C distance is taken as $1.91 \AA ., \varphi$ as 110°, θ as 90° and ω as 60°. These chosen values are admitted to be somewhat arbitrary and the calculated intensities are in general not very sensitive to small changes in them. The projection on (010), the reasonable structure which results and the general improvement in the calculated intensities on adding the contribution due to the phenyl groups are strong points in favor of values close to those chosen.

Since we have been considering a projection in the above discussion, we must still decide in which direction along the b axis the phenyl groups will point. The projection on (100) is of no help here. The decision as to which of the two possibilities is correct was made by comparing calculated with observed intensities for each possibility, and by examination of the packing in each case with the aid of scale models. Carbon parameters corresponding to the above angles and distances are shown in Table III. More accuracy is indicated

Table III
Parameter Values for Diphenylselenium Dibromide

	x	y	z
Se	0	0.080	1/4
Br	0.149	. 080	0.157
$\mathrm{Cl}_{\text {I }}$. 062	. 274	. 332
$\mathrm{CII}^{\text {I }}$. 126	. 461	. 304
CIII	. 172	. 601	. 368
Civ	. 155	. 545	. 454
Cv	. 090	. 354	. 482
CrI	. 044	. 219	. 422

in the carbon parameters than is justified by the present work. This was done in order to retain the proper size and shape of the phenyl group. In no case does the contribution from the phenyl groups change the sign of any $F_{h k l}$ value used in the summations. Accordingly no second approximation was necessary. $F_{h k l}$ values were calculated making use of the tabulated parameter values and Pauling-Sherman atomic scattering factors. No temperature factor was introduced. The calculated values are compared with the observed values in Table IV. The general agreement is considered good enough to confirm the structure reported.

Discussion of the Structure

Projections of the structure of diphenylselenium dibromide on (010) and (100) are shown in Fig. 5. It is seen that the molecule has a two-fold axis as its only symmetry element. There are actually two different kinds of molecules present, one being

Table IV
Comparison of Calculated and Observed Amplitudes

(hkl)	$\begin{gathered} F_{h a l l} \\ \text { Calcd. } \end{gathered}$	Obsd.	(hkl)	$\begin{gathered} F_{h k l} \\ \text { Calcd. } \end{gathered}$	Obsd.	(hkl)	$\begin{gathered} F_{h k l} \\ \text { Calcd. } \end{gathered}$	Obsd.	(hkl)	$\begin{gathered} F_{h k l} \\ \text { Calcd. } \end{gathered}$	Obsd.	(hal)	$\begin{gathered} F_{h k l} \\ \text { Calcd. } \end{gathered}$	Obsd
002	-102	63	502	-114	96	$12 \cdot 0 \cdot 0$	72	62	311	- 6	11	10.1.4	19	0
004	- 34	45	504	78	90	$12 \cdot 0 \cdot 2$	-43	49	313	18	42	$10 \cdot 1 \cdot 6$	-7	0
006	77	74	506	48	64	110	108	83	315	-102	88			
008	34	33	508	-104	86	112	-120	83	317	70	61	211	$-\quad 20$ 80	24 73
$0 \cdot 0 \cdot 10$	-148	105	5.0.10	67	51	114	-120 $-\quad 3$	10	319	-2	0	215	80 9	73 0
$0 \cdot 0 \cdot 12$	115	95	600	150	107	116	- 8	10	511	- 18	33	217	9 $-\quad 57$	50
$0 \cdot 0 \cdot 14$	-13	0	602	- 95	88	118	61	66	513	- 41	63	219	-58 -48	52
$0 \cdot 0 \cdot 16$	- 33	32	604	- 21	28	$1 \cdot 1 \cdot 10$	-120	108	515	- 45	50	411		83
102	48	51	606	12	39	1-1.12	110	100	517	48	52	413	- 56	73
104	- 57	71	608	48	61	310	- 57	38	711	-77	52	415	12	0
106	- 55	. 63	$6 \cdot 0 \cdot 10$	-126	100	312	- 11	0	713	34	54	417	40	30
108	80	92	702	12	36	314	152	123	715	28	45			
1.0.10	- 46	32	704	- 32	49	316	-172	140	717	11	00	611	41	31
1.0.12	-55	62	706	- 2	0	318	-172 55	61	717	11	0	613	- 47	62
200	43	48	708	25	39				911	4	39	615	1	0
202	- 48	62	7-0.10	- 2	0		75	104	913	0	39	617	26	46
204	97	80				512	- 65	79	915	- 67	71	811	- 38	52
206	- 92	88		75		514	82	75	917	55	52	813	48	60
208	45	66	802	- 78	75	516	- 56	50	212	-184	106	815	- 20	20
$2 \cdot 0 \cdot 10$	- 18	0	804	43	64	518	5	54	214	98	94	$10 \cdot 1 \cdot 1$	0	0
$2 \cdot 0 \cdot 12$	50	45	808	23	60	710	160	112	216	19	20	$10 \cdot 1 \cdot 3$	- 2	0
302	- 11	26				712	- 99	100	218	-128	100	020	62	58
304	- 23	35	902	87	80	714	- 20	31	$2 \cdot 1 \cdot 10$	29	34	021	- 86	105
306	- 41	63	904	- 71	59	716	50	54	412	95	90	022	- 42	58
308	28	46	906		39	718	70	65	414	-45	48	023	34	28
$3 \cdot 0 \cdot 10$	- 9	0	908	87	50	910	6	12	416	- 31	45	024		0
3.0.12	- 35	43	$10 \cdot 0 \cdot 0$	-63	68	912	-23	23	418	68	78	025	27	26
400	- 84	87	$10 \cdot 0 \cdot 2$	- 12	26	914	90	77	612	84	84	040	- 35	40
402	- 25	48	$10 \cdot 0 \cdot 4$	118	100	916	-102	85	614	-55	52	041	- 73	84
404	115	93	$10 \cdot 0 \cdot 6$	-140	92	111	-128	83	616	- 1	0	042	20	31
406	-160	109	$10 \cdot 0 \cdot 8$	65	41	113	12	15	618	62	73	043	23	26
408	61	71	$11 \cdot 0 \cdot 2$	- 55	45	115	3	16	812	-116	100	060	- 76	56
$4 \cdot 0 \cdot 10$	23	36	$11 \cdot 0 \cdot 4$	55	48	117	- 10	21	814	77	76			0
$4 \cdot 0 \cdot 12$	2	0	$11 \cdot 0 \cdot 6$	35	30	119	- 65	68	816	34	50			0

the mirror image of the other. In solution there would be little or no barrier involved in going from one form to the other since only rotation of the phenyl groups about the $\mathrm{Se}-\mathrm{C}$ bond is needed, hence there would be no chance of resolving the mixture into two isomers. If the molecular structure in solution is the same as that in the crystal, we would expect a low electric dipole moment for the substance. This is interesting in view of the recent findings of Smyth, Grossman and Ginsburg ${ }^{6}$ who found a rather large electric dipole moment of 3.47 D for diphenylselenium dichloride in benzene solution. Work is now well under way in this Laboratory on the crystal structure of the dichloride and it is apparent already that the structures are quite different in
(6) C. P. Smyth, A. J. Grossman and S. R. Ginsburg, Teis Jounkal, 62, 192 (1940).
spite of similar axial ratios ($0.4986: 1: 0.8531$) as given by Gilta and an identical point group. The dichloride has an 8 molecule unit and the space group is $D_{2 h}^{15}-P b c a$.

The only important bond distances determined in the present study of the dibromide are the $\mathrm{Se}-\mathrm{Br}$ distance of $2.52 \pm 0.01 \AA$. and the $\mathrm{Se}-\mathrm{C}$ distance of $1.91 \pm 0.03 \AA$. The sums of the single bond radii are $2.31 \AA$. for selenium and bromine and $1.94 \AA$. for selenium and carbon. The observed $\mathrm{Se}-\mathrm{Br}$ separation is only $0.02 \AA$. less than that found in $\mathrm{K}_{2} \mathrm{SeBr}_{6}{ }^{7}$ another structure involving an unshared pair, hence the effect of the unshared pair in lengthening the bond seems to be about the same in the two cases.

The non-bonded separation of bromine atoms in neighboring molecules is $4.04 \AA$., just slightly (7) J. L. Hoard and B. N. Dickinson, Z. Krisl., 84, 436 (1933).

Fig. 5.-Projections of the structure of diphenylselenium dibromide on (010) and (100) of the unit cell. The circles, in order of decreasing size, indicate bromine, selenium and carbon atoms. The numbers on selenium indicate the fractional displacements from the plane (010) along the b axis.
greater than twice the van der Waals radius for bromine, $1.95 \AA$. Other packing distances are shown in Table V, the position of the hydrogen atoms being calculated on the assumption that they are in the plane of the phenyl group at a distance of $1.08 \AA$. from the carbon atom of the same number.

Table V
Packing Distances in Diphenylselenium Dibromide Closest distances only are given

$\mathrm{Br}-\mathrm{Br}$	4.04
$\mathrm{Br}-\mathrm{C}_{\text {II }}$	3.16
$\mathrm{Br}-\mathrm{CIV}$	3.77
$\mathrm{Br}-\mathrm{CV}_{V}$	3.76
$\mathrm{Br}-\mathrm{HII}^{\text {I }}$	2.75
$\mathrm{Br}-\mathrm{H}_{\mathrm{I}} \mathrm{V}$	3.33
$\mathrm{Br}-\mathrm{Hv}$	3.05
$\mathrm{Crir}^{\text {-CiII }}$	3.61
$\mathrm{Cv}-\mathrm{Cv}$	3.10
$\mathrm{Cv}-\mathrm{Crv}$	3.44

The authors wish to thank the National Youth Administration for providing the assistance of Miss Roxie Wittenberg, who carried out some of the calculations. We are also indebted to Professor Linus Pauling for reading and criticizing the manuscript.

Summary

An X-ray investigation of orthorhombic crystals of diphenylselenium dibromide shows a unit cell containing four molecules with $a_{0}=13.95 \AA$., $b_{0}=5.78 \AA$. and $c_{0}=15.40 \AA$., all $\pm 0.03 \AA$. The space group was found to be $D_{2 h}^{14}-P b c n$. With the aid of Patterson and Fourier projections on (010) and (100), the complete structure was determined, the parameters being listed in Table III. Calculated amplitudes based on these parameters are compared satisfactorily with observed amplitudes in Table IV.

The diphenylselenium dibromide molecule was found to have a structure approximating very closely a trigonal bipyramid with selenium at the center, bromine atoms at the apices and the three equatorial positions occupied by the two phenyl groups and the unshared pair. The molecular symmetry is that of $C_{2}-2$, a possible mirror plane being eliminated by rotation of the phenyl groups about the axes of the $\mathrm{Se}-\mathrm{C}$ bonds.

The observed bond angles and distances are: $\mathrm{Br}-\mathrm{Se}-\mathrm{Br}=180^{\circ} \pm 3^{\circ}, \mathrm{C}-\mathrm{Se}-\mathrm{C}=110^{\circ} \pm 10^{\circ}$, $\mathrm{Se}-\mathrm{Br}=2.52 \AA . \pm 0.01 \AA$. and $\mathrm{Se}-\mathrm{C}=1.91 \AA . \pm$ $0.03 \AA$.
Los Angeles, California Received November 18, 1940

[^0]: (1) D. P. Stevenson and Verner Schomaker, This Journal, 62, 1267 (1940).
 (2) Lindsay Helmholz and M. T. Rogers, ibid., 62, 1537 (1940).
 (3) P. Groth, "Chemische Krystallographie," Engelmann, Leipzig, 1906, Vol. V, page 40.
 (4) G. Gilta, Bwll. Soc. chim. Belg., 46, 275 (1937).

[^1]: (5) Linus Pauling, "The Nature of the Chemical Bond," Cornell University Preas, 1thaca, N. Y., 1939, p. 176.

